The dermapharmacokinetics approach suggested by the FDA proposes to evaluate the level of a topically applied drug in the stratum corneum (SC) during its uptake and clearance so as to calculate classic pharmacokinetic parameters [1].

Assumption: SC concentration-time curves are directly related to concentration-time curves in the epidermis and dermis.

Previous studies [2,3] have characterized the uptake phase of ibuprofen into the SC from a propylene glycol (PG) vehicle.

The goal of this work was to study the clearance phase of ibuprofen from the SC after 30 minutes of infinite dose application.

IBUPROFEN CONCENTRATION PROFILES AFTER 30 MINUTES OF APPLICATION OF A SATURATED SOLUTION

\[
C_x = K C_{con} \left(1 - \frac{x}{L}
ight) \exp \left(-\frac{D}{L^2} n^2 t^2\right)
\]

RESULTS

Experimental curves [4]

![Graph showing experimental curves for ibuprofen concentration in the SC](image)

Theoretical curves (4)

\[
\dot{C} = 2 \sqrt{\gamma} \frac{C_{con}}{\rho} \int_0^\infty \frac{1}{n^2 \exp \left(\frac{n^2 \tau^2}{L^2}\right)} \cos(\lambda e) \exp \left(-\lambda(n^2 + 1)\right) \frac{1}{\alpha^2} \left(\cos^2(\alpha e) - \cos^2(\alpha t)\right) \lambda = (2n + 1)\pi/2
\]

\[
\dot{C} = CK C_{con} \left(1 - \frac{x}{L}\right) \exp \left(-D \frac{x^2}{L^2}\right)
\]

Appropriate solution of Fick’s second law of diffusion

\[
D/L^2 (h^{-1}) = 0.21 \pm 0.04
\]

\[
K = 2.99 \pm 0.66
\]

\[
AUC (M) = 0.059 \pm 0.017
\]

IBUPROFEN CLEARANCE IN THE PRESENCE OF OCCLUSION

Hypothesis:

Rapid diffusion and/or evaporation of PG [5] results in the, at least transient, maintenance of a saturated ibuprofen concentration at the SC surface even after removal of the original formulation.

ATR-FTIR ANALYSIS OF PG ELIMINATION FROM SC

Delay = 0: Steep PG concentration gradient

- Delay = 30 min occluded: PG profile decreased

- Delay = 30 min unoccluded: Altered profile shape; significantly less PG in the surface SC layers

CONCLUSIONS

- Ibuprofen clearance from the SC after 30 minutes of infinite dose application of a saturated solution in PG:H2O (75:25) was very slow.

- ATR-FTIR analysis demonstrated that PG clearance from the SC is very rapid and it is due to both diffusion and evaporation.

- PG clearance could cause ibuprofen precipitation in the outermost layers of the SC, thus maintaining a saturated drug concentration after formulation removal.

- The role of excipients in topical delivery and topical drug bioavailability deserves further investigation.

REFERENCES

