Mass Spectrometry Imaging of Protein and Lipid Distribution in *Ex Vivo* Human Skin

Malcolm R Clench

MALDI-MSI Microprobe Mode

What do MALDI Images Represent?

- Each image pixel correlates to the corresponding region of the original sample.
- Images are produced for intensity of a selected ion or ions.
- Ion intensity is shown as a change in "brightness/hue" for each pixel.
- Images of different ion distributions can be overlaid for more complex analysis.
Sections

• Some Comments on Xenobiotic Imaging by MALDI-MSI
• Lipid Imaging in Skin
• Protein Imaging in Skin
• Other Projects

Positive Ion MALDI Mass Spectrum of Imipramine RMM 280 Showing An Intense \([\text{M+H}]^+\) ion at \(m/z\) 281
For compounds that do not "fly" by MALDI-MS derivatisation can be used. Here a carbonyl compound has been derivatised with DMNTH (4-dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,4-triazine-2-hydrazine) (Buttarro et al 2007) to yield a derivative RMM 424 with good MALDI properties.

......and sometimes the mass spectrometry is difficult

MALDI-MS Images of the Distribution of A Carbonyl Compound as its DMNTH Derivative in ex-vivo Human Skin. The 30 µm MALDI-MSI data is shown overlaid on H&E stained sections and indicates that the compound does not penetrate into the dermis.

......and when it does all work quantification may be possible......
Human Skin Analysis

- Intact Protein Analysis
 - Sections washed to remove salts/lipids coated with sinapinic acid matrix for direct MALDI analysis
- On-tissue digestion for identification of proteins
 - Sample Preparation
 - Overnight on tissue tryptic digestion (sample was sprayed with trypsin) for peptide analysis
 - Ethanol washes, 70% and 90% followed by a brief chloroform wash
 - α-CHCA matrix application using SunCollect autosprayer (KR Analytical)
 - Instrumentation
 - Applied Biosystems Voyager-DE STR (modified with Nd:YAG laser)
 - Applied Biosystems, MALDI-Q TOF “Q-Star Pulsar -”(modified with Nd:YAG laser)
 - Waters, MALDI-HIDMS Synapt G2

Bottom-up “Shotgun” Proteomics

- Lyse cells
- Mixture of 1000’s of peptides
- Trypsin
- 2-D LC-MS/MS
- RPLC-MS/MS
- LC-IMS-MS/MS
- Database searching - matching MS/MS data with peptide sequence

On-Tissue Bottom-up “Shotgun” Proteomics

- Tissue Section Sprayed or Printed with Trypsin
- Mixture of 1000’s of peptides
- MALDI-PMF
- Database searching - matching MS/MS data with peptide sequence
From skin all peptide MS/MS spectra we acquire without ion-mobility show the presence of lipid peaks – multiple species.
Incorporate IMS Separation on Synapt-G2

Mobilogram shows at least 3 species at this m/z
Acquire MS/MS Data with mobility separation no evidence of lipid peaks

Localisation of Peptide Signals

Proteins Identified

- Collagen
- Decorin
- Keratin
- Haemoglobin
- Serum Albumin
- Lumican

In reality a very small list: suggests complementary techniques (conventional proteomics) needed for identification and only use MALDI-MSI for imaging.
Analysis of Treated Human Skin in Multiple Sample Experiments

MALDI Imaging of Multiple Samples: Upregulation in Treated Skin

A MALDI image of a peptide species present at m/z (A) and m/z (B), both of which are thought to belong to a single protein. The image shows difference in levels of expression between: (i) human skin that was treated with the acetone:olive oil vehicle, (ii) sodium lauryl sulphate, (iii) untreated, (iv) treated with glycerol, (v) DNCB and (vi) sulfamethoxazole.

Experimental Setup

- MALDI-MS image, acquired at a spatial resolution of 150 µm x 150 µm, from untreated human skin.
- Data displayed using Waters HD imaging software.

MALDI-MS imaging of lipids in ex vivo human skin

- Philippe A. Haro
- Emmanuel Francone
- Emmanuel Claude
- St. Luke Woodcock
- Malcolm A. Church
High mass resolution, positive ion MALDI Mass Spectrum of normal human skin, using a-CHCA/ANI as a matrix, with an enlarged inset showing the peak resolution achieved (35,000-40,000 FWHM) (Hart et al., 2011).

MALDI mass spectra taken from regions of treated skin sections.

Principal Component Analysis Scores and Loading s Plots for a Series of MALDI Mass Spectra Taken from Different Layers of Ex-Vivo Human Skin.

IMS Separation of Lipid Species from Human Skin - Synapt G2.
Instrument is also a 40,000 FWHM Resolution Instrument Capable of 1ppm Accurate Mass Measurement

<table>
<thead>
<tr>
<th>Instrument Description</th>
<th>Spectrometer</th>
<th>Mass Range (amu)</th>
<th>MS/MS confirmation</th>
<th>Identity Matched with MS/MS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALDI-TOF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MALDI-MS Images of the Distribution of Selected Lipid Species in Human Skin (150 µm)

(A) Positive Ion MALDI Product Ion Mass Spectrum of the m/z species 703, identified to be SM(18:1/16:0) [M+H]+. (B) Positive Ion MALDI Product Ion Mass Spectrum of the lithium adduct of SM(18:1/16:0) ([M+Li]+) m/z 709.5, displaying the corresponding molecular structure (Hart et al., 2011).
Images at 30 µm Spatial Resolution

MALDI images of a species at m/z 417. The image shows differences in levels of expression between:

(A) human skin treated with hydroquinone, (B) sulfamethoxazole, (C) SLS, (D) the acetone:olive oil vehicle, (E) DNCB, (F) cinnamaldehyde and (G) human skin left, untreated.

Other Projects

Response to Treatment in LSE

Oilatum 24 hours Oilatum 4 hours Physiogel 6 hours Physiogel 24 hours
Compound formulations studied

Physiogel A.I Cream
Active ingredient: Palmitoylethanolamide (PEA) [299.2824 m/z]
Composed of purified water, olive europaea, glycerol 92.0473 m/z, pentylene glycol, palm glycerides, cika, hydrogenated lecithin, equol, olea 410.3913 m/z, betaine 117.0790 m/z, palmitoylethanolamine (0.3% active ingredient), stearic acid 287 m/z, octamide MEA, hydroxyethylcellulose, sodium carboxylic, carbomer and Xanthan Gum.

Oilatum Junior Cream (control)
Oilatum is composed of Active ingredients; light paraffin 6.0% and soft paraffin 15%. Other ingredients include; Macrogol 1000, monobutyrate, cetostearyl alcohol, glycerol, potassium sorbate, benzyl alcohol, citric acid, povidone and purified water.

Image of LSE sections (across 3 different treatment groups). The samples were incubated for 24 hours after the treatment, (Control group untreated). The image was acquired at a 25 um x 25 um resolution; normalised to the total ion count (Data produced 15th/4/13).
Conclusions

- The use of IMS with MALDI images aids specificity.
- Statistical analysis of the large data sets obtained is essential.
- Using complementary techniques provides a means to identify targets which can be related to the MALDI imaging data set.

Current/Future Work

- MS/MS and TLC/MS/MS using SYNAPT G2 of LSE for identification of species detected.
- Knock down LSE models which mimic disease state.
- HDMS® simultaneous MS – MS/MS of each peak during a MALDI-MS acquisition using preset ramping collision energies.
- Statistical analysis using Matlab (refining of methodology)

Acknowledgements

Co-Workers and Collaborators

- Joan Hague, Dr Anne Crecelius, Dr Josephine Bunch, Dr Karen Warburton, Dr Simona Francesce, Dr Brendan Prideaux, Alex Muller, Dr Sally Atkinson, Dr Caroline Earnshaw, Nidhi Bindhal, Dr David Anderson, Marta-Claudia Efijto, Paul Trim, Laura Cole, Philipp Hart Sheffield Hallam University
- Dr Emmanuelle Claude, Dr Marken Snell, Widens
- Dr Julie Wingate, Dr Ron Bonner ABVMS
- Dr Alan Barnes, Shire

- Dr Stephen Gough
- Dr Klaus Dresow, Univ. Muenster
- Prof Michael Scalz, Dr Isabelle Foumier, Univ of Lille
- Prof Stefanos Turtsidis, Prof Gerasimos Monot, CGM, Univ of Florence
- Dr. Dor Richards, Pfizer Global R&D
- Prof John Thomas-Gates, Dr Sarah Robins, Univ of York
- Dr Ruth Pemberton, Dr Maja Abos, Dr Plaxen’s Centre
- Dr. Susan Croft, Dr Kate Shapley, Dr. Philip Green, Syngenta
- Dr Paul Lueders, Dr. Chris Gutter, Univ of Bradford
- Dr John White, Dr Jade Morton, Dr Duncan Rimmer, Health and Safety Laboratory
- Prof Max Bunnell, Univ of Sheffield
- Dr. Peter Marchal, Dr. Jean Monod, Dr Lisa Fiersseh GSK
- Dr Andrew McFerren, Jamie Avery, Quotient Bioresearch
- Dr. Peter Scriven, Prof Gabon Toner, Surgical Oncology Unit, U of Sheffield

Funding

- Pfizer Global R&D, IMOS, HIL, SHU, EPSRC/RSIC, BBSRC/Syngenta, BBSRC/GSK, BMBF, EPIC/CRIUK, CO.LPA